skip to main content


Search for: All records

Creators/Authors contains: "Luo, Hongmei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Free, publicly-accessible full text available July 7, 2024
  3. Abstract

    In this work, an organic‐inorganic hybrid crystal, violet‐crystal (VC), was used to etch the nickel foam (NF) to fabricate a self‐standing electrode for the water oxidation reaction. The efficacy of VC‐assisted etching manifests the promising electrochemical performance towards the oxygen evolution reaction (OER), requiring only ~356 and ~376 mV overpotentials to reach 50 and 100 mA cm−2, respectively. The OER activity improvement is attributed to the collectively exhaustive effects arising from the incorporation of various elements in the NF, and the enhancement of active site density. Furthermore, the self‐standing electrode is robust, exhibiting a stable OER activity after 4,000 cyclic voltammetry cycles, and ~50 h. The anodic transfer coefficients (αa) show that the first electron transfer step is the rate‐determining step on the surface of NF‐VCs‐1.0 (NF etched by 1 g of VCs) electrode, while the chemical step involving dissociation following the first electron transfer step is identified as the rate‐limiting step in other electrodes. The lowest Tafel slope value observed in the NF‐VCs‐1.0 electrode indicates the high surface coverage of oxygen intermediates and more favorable OER reaction kinetics, as confirmed by high interfacial chemical capacitance and low charge transport/interfacial resistance. This work demonstrates the importance of VCs‐assisted etching of NF to activate the OER, and the ability to predict reaction kinetics and rate‐limiting step based onαavalues, which will open new avenues to identify advanced electrocatalysts for the water oxidation reaction.

     
    more » « less
  4. Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical, electronic and optoelectronic properties of the materials, especially low-dimensional materials. Two-dimensional (2D) organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field; nevertheless, studies on this remain elusive. Here we report on how the surface depletion field affects the structural phase transition, quantum confinement and Stark effect in 2D (BA)2PbI4 perovskite microplates by the thickness-, temperature- and power-dependent photoluminescence (PL) spectroscopy. Power dependent PL studies suggest that high-temperature phase (HTP) and low-temperature phase (LTP) can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates. With the decrease of the microplate thickness, the structural phase transition temperature first gradually decreases and then increases below 25 nm, in striking contrast to the conventional size dependent structural phase transition. Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase, the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs. This explanation was further supported by the temperature dependent PL studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes. Along with the thickness dependent phase transition, the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect. 
    more » « less
  5. null (Ed.)